DAZIO: detecting activity zones based on input/output call and SMS activity

dc.contributor.authorNúñez del Prado, Miguel
dc.contributor.authorLuna, Ana
dc.contributor.authorGauthier, Romain
dc.date.accessioned2017-10-17T21:30:42Z
dc.date.available2017-10-17T21:30:42Z
dc.date.issued2016
dc.description.abstractMobile telecoms operators possess an enormous quantity of data, which could be used to reduce the cost of installing new infrastructure, to provide a better QoS or to plan their infrastructure. Thus, they are concerned to model, understand and predict SMS and calls activity levels in their infrastructures. Besides, SMS and call activities analysis can open new business opportunities for geomarketing as well as trade area analysis. In the present effort, we detected activity zones with a difference of only 0.5 km from the reference activity areas extracted from Geo-tweets. We also used Markov chains to represent and predict SMS and call activity levels, achieving a prediction success rate between 80% and 90%.en
dc.formatapplication/pdf
dc.identifier.citationNúñez del Prado, M., Luna, A., & Gauthier, R. (2016). DAZIO: detecting activity zones based on input/output call and SMS activity. Lima: Universidad del Pacífico, Centro de Investigación. Recuperado http://hdl.handle.net/11354/1825es_PE
dc.identifier.urihttp://hdl.handle.net/11354/1825
dc.language.isoeng
dc.publisherUniversidad del Pacífico. Centro de Investigaciónes_PE
dc.publisher.countryPE
dc.relation.ispartofseriesDocumento de discusión;DD1620
dc.rightsinfo:eu-repo/semantics/openAccess
dc.sourceRepositorio de la Universidad del Pacífico - UPes_PE
dc.sourceUniversidad del Pacíficoes_PE
dc.subjectTelecomunicacioneses_PE
dc.subjectTeléfonos celulareses_PE
dc.titleDAZIO: detecting activity zones based on input/output call and SMS activityes_PE
dc.typeinfo:eu-repo/semantics/workingPaper

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DD1620.pdf
Size:
4.94 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections